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Unsteady Aerodynamic Forces on Slender Supersonic Aireraft

with Flexible Wings and Bodies

Jorx E. Yares* axp Epmoxnp F. E. ZeypeL’

Midwest Research Institute, K ansas City, Mo.

The present paper derives generalized aerodynamic forces for slender supersonic aircraft on
the basis of slender-body theory. Particular consideration is given to configurations which
are spanwise flexible. To treat configurations with flexible wings and bodies, the slender wing-
body problem is first reduced to a simple body problem whose solution is well known, and a
“modified slender-wing problem.”” An integral solution of the latter is obtained, utilizing the
circle theorem or method of images and a known solution of the airfoil equation for a double
interval.* With this approach, it is not necessary to apply conformal mapping techniques,
and the solution so obtained is valid for arbitrary spanwise downwash distributions. On the
basis of slender-body theory, the velocity potential and, subsequently, the generalized aero-
dynamic forces are derived for a general class of spanwise flexible wing-body configurations.

Nomenclature

Qnm = generalized coordinate, see Eq. (3.1)

A,B,C = see Eq. (3.8)

flzy) = planform deflection function, see Eq. (3.1)

k = reduced frequency (k = wl/U, where o is the
flutter frequency, rad/sec)

l = body length (ft)

P.(y) = gpanwise mode shapes, see Eq. (3.2)

POy = wing deflection modes, see Eq. (3.2)

P(z,y) = differential pressure (1b/{t2)

Qrq = generalized aerodynamic force, see Eq. (4.8)

Q™" = generalized aerodynamic force coefficient,
see Eq. (4.9)

7,0 = polar coordinates of cross-flow plane

R(zx) = body radius

Re = denotes real part of a complex function

s(z) = gemispan of the wings

U = forward velocity of the configuration (ft/sec)

Vi(x),V(z,y) = downwash functions for the body and wings,
respectively

Wolx,y),W(x,y) = modified downwash functions, see Eqs. (2.8)
and (2.14)

w = complex variable (w = y + iz = re®)

9,2 = Cartesian coordinate variables, see Figs. 1
and 2

0 = air density (slugs/ft3)

@ = slender-body velocity potential

o102 = components of ¢, see Eq.( 2.4)

x(y) = kernel function, see Eq. (2.16)

x1(8) = see Eq. (3.12)

I. Introduction

N previous aeroelastic studies, various techniques have
been used to approximate the unsteady aerodynamic
forces in supersonic flow. The usual procedure is to consider
only the lifting surfaces and to neglect the aerodynamic forces
generated by the body. This artifice is in some cases unsatis-
factory, however, in view of the trend of present day aircraft
to more slender bodies and low aspect ratio wings. It is,
therefore, essential to assess the importance of body flexibility
on the aerodynamic forces and its influence on the flutter of
slender supersonic aircraft.
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It is a formidable operation indeed to consider the aero-
elastic behavior of wing-body configurations on the basis of
exact three-dimensional aerodynamic theory. The basic
difficulty is associated with the boundary conditions as is
evident from the procedure used to derive the three-dimen-
sional velocity potential for thin wings. One usually assumes
a fundamental solution of the potential equation which con-
sists of a continuous distribution of sources or other singulari-
ties over the planform. The boundary condition that the
flow shall be tangential to the surface of the wing is, in prin-
ciple, easily satisfied since the source strength is proportional
to the downwash. For wing-body configurations, however,
it is not clear that a point relation exists between the down-
wash and source strength because part of the configuration
surface does not coincide with the surface on which singulari-
ties are distributed. We avoid this difficulty in the present
investigation by applying slender-body theory to derive a
two-dimensional approximation of the velocity potential and
generalized aerodynamic forces.

In previous studies, slender-body theory has been applied
successfully to obtain both steady and unsteady aerodynamic
forces for wing-body combinations. The well-known tech-
niques of conformal mapping readily yield a formal solution
valid for a rather arbitrary class of slender configurations.!
To the authors’ knowledge, however, practical applications of
slender-body theory have been made only in the case that the
local downwash is independent of the spanwise coordinate.
In the present development, a method is presented for
treating spanwise flexible wing-body combinations. For the
circular body mid-wing configuration, the problem of treating
spanwise downwash variations becomes quite tractable.

II. General Solution of Laplace’s Equation for
Slender Wing-Body Configurations

Consider a circular body mid-wing configuration with a
typical cross section as shown in Fig. 1. We seek a solution
of Laplace’s equation

O%p %
oy? et 0 2.1)
subject to the boundary conditions
O¢ = V(z) siné, on the body (2.2)
or r=R
Op .
Sl = V(x,y), on the wings (2.3)
2 1z=0
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where

o(z,y,2) = perturbation velocity potentialt

V(z,y) = downwash on the wings

V(x) = downwash along the body axis
6 = tan~'(z/y)

r = Vet 2

R = R(z) = body radius}

Also, the potential must vanish at the leading edge of the con-
figuration and at infinity.
To solve Eq. (2.1), let
¢(x’y:2) = §01(Z’,Z/72) + §02(x,y,2) <2~4)

where ¢; and ¢, are harmonic functions. Now, if ¢; satisfies
the boundary condition Eq. (2.2)—i.e.,

bgm _ .
o lep V(z) sind, on the body (2.5)

then it readily follows from Egs. (2.2), (2.3), and (2.4) that
2 must satisfy the conditions

s = 0, on the body (2.6)
or r=R
bgag .
> = Wy(z,y), on the wings 2.7
where
Wolz,y) = V(zy) — E o (2.8)

Thus ¢, is the potential due to the body in absence of the
wings, and ¢ is the potential due to a modified downwash dis-
tribution, Wy(z,y), on the wings and a rigid stationary body at
the origin.

The solution for ¢, is readily obtained by placing an iso-
lated doublet at the origin and applying the boundary condi-
tion, Eq. (2.5). We have

y P2
ei(z,y,2) = —V(x)Re (%) (2.9)

where
w =y + iz = ret¢ (2.10)

and Re denotes the real part of a complex function. Note
that ¢ vanishes at infinity and at the leading edge of the
configuration as required. The downwash generated on the
wings by the body is easily obtained from the last result.
Differentiating Eq. (2.9) with respect to z and setting the
latter equal to zero, we find

91
9z l=0

so that the modified downwash distribution, Eq. (2.8), be-
comes

(2.11)

RZ
Wolz,y) = V(zy) + V() ] (2.12)

1 Since flutter is of principal interest, simple harmonic motion
is assumed at the outset; hence, when we refer to the potential,
downwash, or deflection, the complex amplitudes of these entities
are implied.

§ Nondimensional variables are employed throughout the
present report. All distances are referred to the body length I, and
physical time is related to the integral U /I, where U is the forward
velocity of the configuration.
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Fig. 1 Typical cross section of wing-body configuration

Now, the solution for ¢. is easily derived by the method of
images [see p. 277, Eq. (46.2) of Ref. 2] or by the circle
theorem.? The integral equation which relates the potential
on the wings and image wings (see Fig. 1) to the modified
downwash distribution, Eq. (2.8), along the y axis is

R%/s s
1 f f Po(, ) in = Way) (2.13)
Rys N — Y

where

—b a —b
dn =
f_a +j; fimdn f_a fmdn +
f £ (mdy
b (2.14)

[ Wolw), R<vyl<s
Wy = | B

2
1 - Wola, Rz/w, B<nw<r
and the subseript n denotes partial differentiation with respect

to 5. The result, Eq. (2.13), is the well known airfoil equa-
tion for a double interval and from Tricomi* we readily obtain

1 —R2/s
S
2ryx(y) J

f ) x(n)W(x,n>< J”)d,, (2.15)
R/s

x(¥) = V(s + R¥/s)* — (y + R¥/y)?

For a given downwash distribution, one can carry out the
integration in Eq. (2.15) and obtain the modified slender-
wing potential on the real axis. Analytic continuation of the
latter yields the potential throughout the complex plane.

It is interesting to note that if the transformation y = R*/7
is introduced into Eq. (2.15) for those portions of the integrals
which extend over the image wings, there results a special
case of the general solution obtained by conformal mapping
when the latter is transformed to physical coordinates [see
Eq. (73) of Ref. 1]. The form Eq. (2.15), however, is par-
ticularly convenient from the viewpoint of numerical evalua-
tion, since the limits of integration coincide with the branch
points in the kernel function x(y). Thus it is only necessary
to choose a functional representation of the downwash Eq.
(2.14) which is analytic over the wings and image wings, and
tractable results are readily obtained from Eq. (2.15) by
contour integration. The simplicity of this method to derive
generalized unsteady aerodynamic forces for spanwise flexible
wing-body configurations is clearly depicted by the example
given in the following section.

.w%(x;y) =

where

(2.16)1

' The kernel function x(y) is also parametrically dependent on
x through the local semispan, s(x).
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Fig. 2 Planform of wing-body configuration

ITI. Slender-Body Velocity Potential for
Spanwise Flexible Configurations
To derive the velocity potential for spanwise flexible wing-

body configurations, we consider a planform deflection func-
tion of the form

f(wyy) Z a own + ZO Z an'mx Pm(y) (31)

where a@.. is the generalized coordinate associated with the
nth chordwise mode, 27, and the mth spanwise mode

[P0 = 42 = B

R2(m + 1) R?
P.ly) = %l e (7 - 1> JR<yl<s !} (3.2)
o, o<lbl<aA )

Here we assume that the body cross section is approximately
uniform [0P,(y)/0z = 0] at locations where the wings are
attached. Now, the downwagh is given in terms of the deflec-
tion by the relation?

V) = L0 4 ikftan) (33)

where % is the reduced frequency. From these results, to-
gether with HEgs. (2.12) and (2.14), one readily obtains a
modified downwash funetion which is analytic over the wings
and their images. We have

W(z,y) = V)1 + R/y?) + }: 2 A (N1 +

n=0 m=1

where
Af
V(z) = D annze=t + jkar) (3.5)
n=0
The first term on the right-hand side of this expression is the

downwash for the spanwise rigid case; therefore, substituting
Eq. (3.4) in Eq. (2.15), we get

mmw=—W@%—

am(Ma ™t 4 jkae) X
27&/9((1/) nzo mzl ( k)

—R2%/s s
[+ swrom (M) a 6o
—s RY/s Yy

# In the present study, the symbols 7 and j both denote V=1,
The distinction is made because j is associated with the complex
time dependence of the problem and 7 is associated with the com-
plex variable approach to the solution of Laplace’s equation.
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The spanwise integrals appearing in the last result are easily
evaluated by contour integration. Omitting details, we write
for M =2

en(ay) = — V(@) 2 °"(y) [i(”)) + 3B@x() +
SC(x)x"(y)] W — RYy) BT
where
1 N
A = 3 2 (ot + hans = R/ X

2,50
$au s § 6+ R0 - o+ Ry |}

N
B(z) =é 2 (mar™t + jhar) X (3.8)
n=0
{ an + 5 B+ RYs) — 4321}
1 N
Cl@) = = 5 2 aulner™ + jher)
n=0
But, since
1 oxnt ,
- o el - e - R GY)

and as ¢.(r,y) must vanish at the leading edge of the con-
ficuration, we integrate Eq. (3.7) with respect to ¥ and obtain

e(zy) = —V(@x@) + A@xy) +
B()x¥(y) + C@)x*(y) (3.10)
which is also the total potential, ¢(z,7), on the wings. Com-

bining Eq. (2.9) with the analytic continuation of Eq. (3.10),
one deduces the total potential on the body,

e(z,R,0) = —V(2)[x:(f) — B sinb] +
A(@) [x1(6) — 2R sinf] +
B(z) [x:*(6) + 2R3 sin30 — 3R(s* 4+ R*/s?) sinf] +
C(z)[x:%(0) — 2R5 sindf + 5R3*(s? + R4/82> sin38 —

loR( 10F: >sin0] (3.11)

7 G
x1(8) = V(s + R?/s)? + 4R? cos?6 (3.12)

where

IV. Derivation of the Generalized Aerodynamic
Forces

Here, we derive the generalized aerodynamic forces for the
planform shown in Fig. 2. It is assumed that the body and
wings terminate in the base plane (x = 1), and that the body
radius is constant (R = R,) aft of the intersection (x = b) of
the wing leading edge with the body. The maximum semispan
of the wings is so.

Due to symmetry, the differential pressure is twice the pres-
sure on the upper surface of the configuration. Hence, in view
of the assumed geometry, we have

d
Ply) = 200 [ 222D ooy |
where
P(z,y) = differential pressure (Ib/ft?)
P = freestream air density (slugs/{t?)

and ¢(z,y,2) is given by Eq. (3.10) on the wings and by Eq.
(3.11) on the body. The generalized aerodynamic force asso-
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ciated with the pth chordwise mode and the gth spanwise
mode is defined by

1 N .
qu = 2PU2f f [a¢(§;§/—’~) 4+ jk50(x:.7/72):| X
0 —s
x?P (y)dydr (4.2)

which for the configuration considered can be expressed in the
alternate form

Q=200 [ oy i)y — 2602 X

1 8
fo (par1 — jha®) f ooy P,)dydz (43)

The latter is more convenient since chordwise derivatives of
the potential are eliminated.

Now, for the rigid spanwise mode, Po(y) = 1, we readily
obtain

1
Qo = 2pU? I:Io(l) - f (par™* — J'kz”)fo(x)dx] (4.4)
0

where
1w = [ etenaiy
2
< Ig(x) = —-‘Egl Vi ifo<z<b

I@) = = 5 [(s = Re¥/9)* + RAV(@) + (4.5)

g (s — Ry?/s)? A(z) + ?%’ (s — Ro?/s)*B(x) +

3 (s~ R0 <o <1
For spanwise deflection modes we get

1
Q= 20U [Iqu) - f (par~t —ﬂcxp)fq(x)dx}
b
qg=12 (4.6)

where

—Ro s
L@ = f + fR o(@y)P,()dy

T
8

(s = RBe?/9)[=V(2) + A(@)] +
TG (6 = R¥/9rBla) +

T (s — Bet/s¥C@) ifq =1
i @

= i% (s® + Rot/sD)(s — Ro*/s) [~V (2) +

A@] + 1128 (3s? + 2R + 3RY/sY)(s —

Re?/)°B(z) + 2516 (3s® + 4R + 3BoY/s?) X
(s — Ry/s)8C(x) ifqg =2
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Utilizing Eq. (3.8), we can express these results in terms of the
generalized coordinates, a,,,. Wehave

N
qu = mpU? E (anOQpnqo + alezmql + an‘—‘Qan2)7
n=0
p=01...N, ¢=012 (4.8)

where the generalized force coeflicients, Q,,2, are defined as
follows:

1
Q= 1,9 + 1,2, Q,° = T I,

1
pnzo = § (]pn(s) + 2302]:0”4)

1 . (4.9)
szu = ,1_2117"(6)] 2l = i_gé(glm(s)_|_161;¢02]W(6))
1
2 = gﬁ (27]pn(10) + 90302Ipn(8) + 80R04IW,(6))
am — mg
on n

and

1
I, = f (pxrt — jkar)(nxr ! + jkx)R2(z)dx —
0
(n 4+ jE)RBy®> (4.10)

1
I, = f (pzr~t — jka?) (nan1 + jka)(s — Ro2/s)’dx —
b

(n + jk)(so — Ro*/s0)" >0 (4.11)

Thus far the body profile ahead of the wings and the wing
planform are arbitrary. Therefore, the results given here are
applicable for a rather general class of slender circular body
midwing configurations. The generalized aerodynamic
forces are readily obtained for a particular configuration by
evaluating the chordwise integrals, Eqs. (4.10) and (4.11).
(See Ref. 3 where numerical results are obtained for a cone-
cylinder body with delta wing.)

The results presented here are subject to the usual limita-
tions of slender-body theory and thus are only applicable for
small combinations of reduced frequency and fineness ratio.

More precisely, terms of the order, k1 %s? log (so\/ M2 — 1),
where M is the Mach number, are neglected in the slender-
body velocity potential, and at the present time studies are
under way to derive an approximation which will include
higher order terms.®? The approach is based on quasi-slender-
body theory,® and should provide a means for examining the
slender-body results more critically.
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